Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development.

نویسندگان

  • Allon I Hochbaum
  • Ilana Kolodkin-Gal
  • Lucy Foulston
  • Roberto Kolter
  • Joanna Aizenberg
  • Richard Losick
چکیده

Biofilms are communities of cells held together by a self-produced extracellular matrix typically consisting of protein, exopolysaccharide, and often DNA. A natural signal for biofilm disassembly in Bacillus subtilis is certain D-amino acids, which are incorporated into the peptidoglycan and trigger the release of the protein component of the matrix. D-amino acids also prevent biofilm formation by the related Gram-positive bacterium Staphylococcus aureus. Here we employed fluorescence microscopy and confocal laser scanning microscopy to investigate how D-amino acids prevent biofilm formation by S. aureus. We report that biofilm formation takes place in two stages, initial attachment to surfaces, resulting in small foci, and the subsequent growth of the foci into large aggregates. D-amino acids did not prevent the initial surface attachment of cells but blocked the subsequent growth of the foci into larger assemblies of cells. Using protein- and polysaccharide-specific stains, we have shown that D-amino acids inhibited the accumulation of the protein component of the matrix but had little effect on exopolysaccharide production and localization within the biofilm. We conclude that D-amino acids act in an analogous manner to prevent biofilm development in B. subtilis and S. aureus. Finally, to investigate the potential utility of D-amino acids in preventing device-related infections, we have shown that surfaces impregnated with D-amino acids were effective in preventing biofilm growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

d-Amino Acids Do Not Inhibit Biofilm Formation in Staphylococcus aureus

Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to pre...

متن کامل

Dose-Dependent Effects of Common Antibiotics Used to Treat Staphylococcus aureus on Biofilm Formation

Background & Objective: Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), represent serious nosocomial and community infections. Biofilm formation as an important virulence factor may be affected by sub-inhibitory levels of antibiotics. Few studies examined the effects of all therapeutic antimicrobial agents on...

متن کامل

Aspartate inhibits Staphylococcus aureus biofilm formation.

Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissu...

متن کامل

SaeRS-Dependent Inhibition of Biofilm Formation in Staphylococcus aureus Newman

The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S. aureus Newman, the sae system is constitutively expressed due to a point mutation in saeS, relative to other S. aureus strains, which results in substitution of proline f...

متن کامل

Effects of local delivery of D-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects.

Infectious complications of open fractures continue to be a significant factor contributing to non-osseous union and extremity amputation. The persistence of bacteria within biofilms despite meticulous debridement and antibiotic therapy is believed to be a major cause of chronic infection. Considering the difficulties in treating biofilm-associated infections, the use of biofilm dispersal agent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 193 20  شماره 

صفحات  -

تاریخ انتشار 2011